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Abstract—Equations are developed in terms of the Lockhart-Martinelli correlating groups for the friction

pressure gradient during the flow of gas-liquid or vapour-liquid mixtures in pipes. The theoretical

development differs from previous treatments in the method of allowing for the interfacial shear force

between the phases; some of the anomalies occurring in previous “lumped flow” models are avoided.

Good agreement with Lockhart—Martinelli empirical curves are obtained. Simplified equations for use in
engineering design are also given.

NOMENCLATURE o friction factor for liquid phase in
cross-sectional area of pipe; Lockhart-Martinelli theory;
cross-sectional area of pipe occupied K, ratio of gas to liquid velocity;
by gas or vapour; Mg,  mass flowrate of gas;
area of interface between phases per M,, mass flowrate of liquid;
unit length of pipe; m, exponent of Reynolds number in
cross-sectional area of pipe occupied Blasius equation: gas phase;
by liquid; n, exponent of Reynolds number in
coefficient in friction coefficient equa- Blasius equation; liquid phase;
tion for gas or vapour; AP, friction pressure gradient if gas flows
coefficient in friction coefficient equa- alone;
tion for liquid; AP, friction pressure gradient if liquid
inside diameter of pipe; flows alone;
hydraulic diameter of gas flow; AP,, friction pressure gradient if both
hydraulic diameter of liquid flow; phases had density of liquid;
friction factor for gas phase during AP 1p, friction pressure gradient during two-
two-phase flow; phase flow;
friction factor when gas flows alone; Ap, a change in perimeter of a phase at
friction factor for gas phase in Lock- pipe wall;
hart-Martinelli theory; Po» perimeter of gas phase at pipe wall ;
friction factor at interface between Pis perimeter of liquid phase at pipe wall ;
phases; S, force between phases per unit length
friction factor for liquid phase during of pipe;
two-phase flow; Sk a “shear force ratio” defined by
friction factor when liquid flows equation (18);
alone; ug, velocity of gas during two-phase flow ;
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uy, velocity of liquid during two-phase
flow;

X, Lockhart-Martinelli parameter,
(AP /APG)*;

X, ratio of the gas mass flowrate to the
total mass flowrate;

Z, dimensionless group defined by equa-
tion (29).

Greek symbols

o, ratio of hydraulic diameter of liquid
during two-phase flow to that during
single-phase flow;

o, as defined by Lockhart and Martinelli :
the square of the ratio of the diameter
of a pipe of cross-section A; to the
liquid phase hydraulic diameter, equa-
tion (3);

B. ratio of hydraulic diameter of gas
during two-phase flow to that during
single-phase flow;

B, as defined by Lockhart and Martinelli :
the square of the ratio of the diameter
of a pipe of cross-section A; to the
gas phase hydraulic diameter, equa-

tion (4);

0, angle shown in Fig. 2;

L absolute viscosity of gas;

UL absolute viscosity of liquid;

Por density of gas;

Pl density of liquid;

TG shear stress of gas on wall;

Tpn shear stress between phases;

Ty shear stress of liquid on wall;

- Lockhart-Martinelli parameter
(APp/AP o)

oL, Lockhart-Martinelli parameter
(AP p/APp)*.

1. INTRODUCTION

IN RECENT years much of the work on under-
standing two-phase (gas-liquid or vapour-
liguid) flow has been directed towards the
examination of particular flow patterns, and
considerable progress has been made [1, 2] in
this direction. However, the engineer, who may
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be concerned in the design of plant with the
whole range of flow patterns, will normally use
more generalized procedures for estimating
pressure gradients which are not tied to specific
flow patterns. One such procedure is that
developed by Lockhart and Martinelli [3]
some 18 years ago; over a wide range of con-
ditions this procedure has been shown [4] to
give better agreement with experiment than more
recent procedures.

In this report the basis of the Lockhart-
Martinelli correlation is re-examined.

2. PREVIOUS THEORY

The basis of Lockhart and Martinelli’s de-
velopment [3] is the assumption that for each
phase

APTP=2f/l:u%pL/DL N
and
AP 1p = 2 f¢ug pe/De. 2)

where the phase hydraulic diameters D; and Dy,
the phase velocities U, and Uy, and the friction
factors f; and f¢ are defined as follows:

A =o (f Di), 3)
4
4
dg= (Z Dé). (4)
M
u, = ,_n_L~ (5
a’(z D[%) PL
M
g = — ©)
B (Z th;) Pe
4 M; YV
no_ _ 7
L CL (7‘[ a, DL[JL) 5 ( )
and
4 M; Y
v —_—¢ 1. 8
¢=Co (nﬁ'Dcllc) ®)
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As
A=A+ A, ©)
from equation (3), (4) and (9)
o« D} + p' Dt = D% (10

The analysis eventually resulted in equations
relating

Do D o and B
with
¢L, ¢G7 AL/ A and AG/ A,
where
AP 1p
= 11
. /(A,,L) (1)
and
_ APrp
b6 = \/( AP, ) (12)

The analysis also resulted in the postulation
that both sets of parameters are functions of X

where
_ (AP,
X _\/<A_PG)

Graphical plots of a wide range of data con-
firmed this postulation and resulted in empirical
curves for use in design.

The analysis was unsuccessful in that no
equations suitable for predicting pressure gradi-
ents were obtained (empirical curves were
developed). Also the values of o' obtained were
all less than unity, whereas geometric con-
siderations would suggest that o should be
greater than unity; this follows from equation
(3) since spread over the wall decreases the
hydraulic diameter relative to a circular cross-
section.

Turner and Wallis [5] have more recently
used essentially the same set of basic equations
(1-8) in a treatment which leads to theoretical
equations. However, as Wallis writes: ‘““there is

(13)
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unfortunately no rationale for the excellent
agreement between (the) equation (relating ¢
and A;/A4) and Martinelli’s empirical results”.

3. PROPOSED THEORY

Irrespective of the flow pattern, the following
equations can be written for the force balances
on each phase:

A APrp — 1, p, +5=0 (14)
and
AgAPpp —16p6 — S =0, (15)

where the shear force S per unit length of pipe
at the interface between the phases acts on the
liquid in the direction of motion.

Following normal single-phase procedures
the shear forces at the pipe wall will be assumed
to be

(16)
and
(17

For convenience define a “‘shear force ratio”

_ S
"~ AgAP.p

Combining equations (14), (16) and (18) gives

Sr (18)

Ag _ fLu%.prL
AP pp (1 + Sg AL> =T34, (19)
and equations (15), (17) and (18)
2
u
APy (1 — S = J64PsPs

24,

In Fig. 1 the assumed phase distribution is
indicated and, in Fig 2, the distribution if the
interface between the phases lies along radial
lines, the phase cross-sectional areas remaining
the same. Let Ap be the change in perimeter of
each phase due to this change in distribution,



D. CHISHOLM

1770
Interface
A
FiG. 1. A representative phase distribution.
\% e
79 —
4

Interface

FiG. 2. Phase distribution: each phase occupying a sector

of cross-section.

then from geometric considerations

pG—Ap_49D_i
Ag  6D* D’

and
pt+Ap 4
A D
Now define « and f# such that

p_ 4
A, oD’

and
Pe _ 4
Ag BD’
Combining equations (9), (21-24),
1 4 4

B - Ag Aca.

21

(22)

(23)

(24)

(25)

Substituting equations (23) and (24) in equa-
tions (19) and (20) respectively gives

Ag 2fL“%PL
AP 1 e
TP ( + Sz AL) D (26)
and
2 fu
AP;p(l — Sg) = ——f‘;}; Ps. 27)

Thus in the proposed theoretical development
equations (26) and (27) replace the Lockhart-
Martinelli equations (1) and (2).

Combining equations (26) and (27) gives

1 05 0-5 05
<=3 O () o
where
Z= (ﬂi‘g@)“, (29)
I — Sk
The phase continuity equations are
M, =uALpL (30)
Mg = ugAgpe (31
and from equations (28, (30) and (31)
A, _ l&(&)o-S(ﬁ)o-s (E)O‘S_ )
A¢ ZMg\p. fa x

If the phases flow alone, the pressure drops
per unit length are given by

2fiM}
= 33
DL D Asz’ (33)
and
_ 2feM}
Combining equations (13, 32-34) gives
7 \0-5 05 05
S 2O
Ag Z\S% G o
and from equations (9, 26, 30, 34)
APy, 1 fill+ AgA)® a0

AP, afj 1+ SgAg/AL
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Combining this equation with equation (29),

APTP 1 fL AG AG
I ) . 37
AP, —ar W Ta)\az Y O

4. THE FRICTION FACTORS

The single-phase friction factors f; and f;
can be expressed

ro__ A‘“L "
fi=C (MLD> : (38)
and
A m
fo=Cs (M" G) . (39)

It is assumed that the individual phase
friction factors during two-phase flow can be

expressed
_ A \"
o= (). )
and
A m
fo= CG( M‘;’;‘;,) . (@1)

The inclusion of « and B in these equations is
on the assumption that the characteristic length
in Reynolds number is proportional to the
hydraulic diameter of the phases.

Hence from equation(38-41)

fé; fL 0-5 _ ﬂA 0-5m AL 0-5n
e -GG @
and from equations (38) and (40)
% = (o%)n. 43)
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Values of the exponents m and n are given in
Table 1. The four flow mechanisms in this
table are as defined by Lockhart and Martinelli

[3]:

1. Flow of both the liquid and the gas may be turbulent
(turbulent—turbulent flow).

2. Flow of the liquid may be viscous and flow of gas may
be turbulent (viscous—turbulent flow).

3. Flow of the liquid may be turbulent and flow of the
gas viscous (turbulent—viscous flow).

4. Flow of both the liquid and the gas may be viscous
(viscous—viscous flow).

It is important to note that equations (42)
and (43) are obtained on the assumption that
for each phase the single and two-phase flows
have the same mechanisms [e.g. the Reynolds
number in equations (38) and (40) must in both
cases be either turbulent or viscous].

Substituting equations (9) and (42) in (35) gives

AL 1—-0'5n A 1—-0'5m XﬂO-S(l +m)
() () -2
(44)
and substituting equations (11) and (43) in (37)

1 Ag\7"( A
2__~ (14 2€ 6 .
¢L al+n ( + AL) (AL22 + 1 (45)

If Z is known equations (9, 25, 44, 45) can be
solved for given values of X and A;/A to give
give ¢,. Previous work by the writer [6, 7] on
flow through orifices has indicated that for those
conditions Z tends to approach a constant
value independent of the individual phase flow-
rates.

Table 1. Values of m and n

Flow mechanism turbulent— viscous— turpulent— vi;cous—
turbulent turbulent viscous viscous
Surface smooth rough smooth smooth smooth

n 02 0 10 02 1-0

m 02 02 10 10
Liquid Reynolds number >2000 > 2000 < 1000 >2000 <1000
Gas Reynolds number >2000 > 2000 >2000 <2000 <1000
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5. COMPARISON WITH EXPERIMENT

Table 2 compares values of ¢, predicted
using equations (25), (44) and (45) and Z = 14
with Lockhart and Martinelli’s empirical values.
This value of Z was found by trial and error, to
give the most satisfactory agreement with the
empirical values. In evaluating ¢, the values of
A/A; recommended by Lockhart and Martinelli
[3] were used; these are shown in Table 2.

Where both phases flow turbulently the pre-
dicted values of ¢, are within —13 per cent,

for a viscous liquid and turbulent gas within
— 14 per cent, + 21 per cent; and for both phases
flowing viscously —21 per cent, + 16 per cent.
There are no data for the case of a turbulent
liquid and a viscous gas.

Figures 3-5 show the comparison of pre-
dicted values of ¢; with experimental values for
the turbulent-turbulent, viscous-turbulent and
viscous—viscous regimes; these figures corres-

D. CHISHOLM

Table 2.Values of ¢, predicted by proposed theory compared
with Lockhart—Martinelli values

oL
X 01 10 10 100
A/A; 20 435 1-88 111
Turbulent-turbulent flow
Lockhart-Martinelli 185 420 175 1-11
Proposed {m=n =0 180 402 1-62 1-07
theory m=n=02 170 384 1-53 1-04
Viscous—turbulent flow
Lockhart-Martinelli 152 348 159 1-11
Proposed theory (m = 02) 184  3-63 1-37 1-01
Turbulent—viscous flow
Lockhart—Martinelli 145 348 1-66 111
Proposed theory (n = 02) 162 350 136 0952
Viscous-viscous flow
Lockhart—Martinelli 124 261 1-50 111
Proposed theory 132 302 119 088

pond to the figures in Lockhart and Martinelli’s
original paper (note that ¢; = ¢, X). The curves
of A /A obtained by Lockhart and Martinelli

00—
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.
c .
8 . .’g’:‘
g o-0p- — .
£ <
. .
o /'
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3
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®
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FIG. 3. Relation between 4,/A4, ¢; and

100 100

Parameter, X

parameter X for turbulent—turbulent flow.
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are also shown in Figs. 3-5, the same curve or

being found to hold for all regimes.

6. ANNULAR FLOW PATTERN AND
ZERO SLIP CONDITION

The basis of the above development is the
assumption of a value for Z. Two limiting
conditions enable Z to be estimated as shown
in the Appendix. The first of these is the case of
annular flow which results in the equation

N
= (+5)

for the case of turbulent—turbulent flow in rough
tubes (n = 0). This form of equation has, of
course, been examined elsewhere [8-11].

The zero slip condition, if examined assuming

(46)
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PL }0'5 (48)

Pe.

1
¢L=7_%

again for the case of turbulent—turbulent flow in
rough tubes (n = 0). Table 3 compares values of
¢, obtained using equations (45), (46) and (58)
with the Lockhart-Martinelli values. Equations
(46) and (48) tend to predict values greater than
Lockhart and Martinelli but the annular
assumption is not unsatisfactory the maximum
difference from Lockhart and Martinelli being
+8 per cent; however these equations do not
satisfactorily predict values for regimes other
than the turbulent—turbulent.

{(1.—.x) +x

Table 3. Values of ¢, by various theories for rough pipes

no local slip as in the Bankoff model [12], X 01 10 10 100
results in the “homogeneous” equati
geneo quation Lockhart—Martinell 185 42 175 111
AP p Proposed theory 180 402 162 107
P _ 1 — x|+ x _L’ 47) Annular theory 200 435 188 111
APO PG Homogeneous theory 193 540 193 1-10
1-00—
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FIG. 4. Relation between A, /A, ¢ and parameter X for viscous—turbulent flow.
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F1G. 5. Relation between A, /A, ¢; and parameter X for viscous—viscous flow.

It is worthwhile examining at this point to
which extent the agreement obtained using
equation (45) is due to the value of A /A4
selected. Tn relation to this, consider the data
given in [9]. With X < 2, 4;/A4 is a function of
liquid mass velocity (ie. the slip ratio K is a
function of M, [13]) hence for a particular X
there are a series of values of 4,/A. Figure 6
compares theory with experiment. In evaluating
the predicted curves in this figure, X is kept
constant and A/A; varied; it can be seen that
the proposed theory more closely follows the
experimental trends than the annular theory.

7. VALUES OF « AND f

Values of o and f estimated from equations
(25) and (44) are given in Table 4. The values of
o are generally below unity which is consistent
with the known tendency for the heavier liquid
phase to approach the wall; the trend of « as

6
5 —
<
- 4
o
@
E
2
&
3
2._
=== Proposed theory
«=———- Annular theory
—— — Experiment
[ 1 |
(o] o2 0-2 03

" . lL
Liquid fraction, -

F1G. 6. Variation of ¢ with 4;/4 for
X =1
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Table 4. Values of o and

01 10 10 100
X o B o i} o B o B
Turbulent—turbulent (m = n = 0) 0-067 367 0274 479 0719 1-79 0963 1-53
m=n=02) 0071 323 0-288 382 0754 1-58 0998 102
Viscous-turbulent 0057 7-82 0278 448 0730 1172 0995 1-05
Turbulent-viscous 0077 2-69 0-355 246 0954 111 1-172 044
Viscous—viscous 0-080 2:56 0-331 2-53 0-846 1-26 1138 048

defined by equation (23) will differ from that of
o' defined by equation (5). The present theoretical
approach overcomes the anomalous trends in
the hydraulic diameter of the liquid phase noted
by Lockhart and Martinelli and by Turner and
Wallis.

The values of § are normally above unity and
it is of interest that the maximum divergences in
predicted ¢, occurs where  becomes less than
unity. This corresponds to the condition where
there is a small vapour cross-section distributed,
for example, as in Fig. 1, and results in the
predicted two-phase pressure drop being less
than that for liquid flow alone (the shearing
force of the liquid on the wall is greater than in
the absence of the gas phase, but the liquid
perimeter with the wall has decreased); this is
not necessarily physically impossible but is not
confirmed by the limited data available in this
region.

8. THE SHEAR FORCE FUNCTION Z

Considering now in more detail the function
Z defined by equation (29), the interfacial shear
force is related to the interfacial shear stress in
the equation

S B ti Ai‘ (49)
Assume that the interfacial shear stress can be
expressed
J; fi 2

1 2
(%)

(50)

Ti =5("G —u;) pg =?“G

Substituting equation (50) in (49)

: 1)?
S=£ 2<1_E> pGAi'

2 Ug (51)

Substituting equations (20), (24) and (51) in (18)

gives
Sk J: BDA; 1?2
== {1 -=]. 52
Rl O R
Rearranging
Sg = L (53)
T lAA T
fi BDA[1 — (/K]
Substituting equation (53) in (29)
fi BD AA; 112 3
Z=|"=— - = .
<fG4ALAGl X +1 (54)

In examining the dimensions of the above
expression it should be remembered that 4; is
the interfacial surface area per unit length of
pipe.

The form of equation (54) gives some ex-
planation for the relative success of treating Z
as a constant (it is for example independent of
the pressure gradient and to the first order on
the phase mass velocities) but more detailed
examination of this aspect is required.

9. RECOMMENDED EQUATIONS
FOR DESIGN

Equations (44) and (45) are unnecessarily
complicated as far as the engineer is concerned.
For engineering calculations the writer recom-
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mends [9] the following equations for predicting
friction pressure drop during two-phase flow in
pipes

¢t =1+ C/X + 1/x%

where C as the following values:

(55)

turbulent—turbulent flow, C = 20;
viscous—turbulent flow, C = 12;
C = 10;
C=3.

turbulent--viscous flow,
viscous-—viscous flow,

A theoretical basis for equation (55) for
turbulent-turbulent flow in rough pipes is given
in the Appendix.

Values predicted using these values of C and
equation (55) are compared with Lockhart and
Martinelli’s values in Table 5. The values of C
are restricted to mixtures with gas-liquid density
ratios corresponding to air—water mixtures at

Table 5. ¢, from equation (55) and Lockhart—Martinelli

oL
X 01 10 10 100

Turbulent-turbulent flow

Lockhart—Martinelli 185 42 175

Equation (55) (¢ = 20) 1773 47 173
Viscous-turbulent flow

Lockhart-Martinelli 152 348 1-59 111

Equation (55) (¢ = 12) 149 375 1-49 1-06
Turbulent-viscous flow

Lockhart-Martinelli 145 348 1-66 1-11

Equation (55) (¢ = 10) 141 347 142 1-05
Viscous—viscous flow

Lockhart —Martinelli 124 261 150 111

Equation (55) (¢ = 5) 123 265 123 103

atmospheric pressure. For turbulent-turbulent
conditions the writer has discussed elsewhere
[14, 15] methods of extrapolating these equa-
tions for other density ratios. For the other flow
mechanisms further work is required before
recommendations can be made on the influence
of the density ratio.

10. CONCLUSIONS
A theoretical basis for the Lockhart—-Martinelli
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correlating procedure for two-phase flow is
developed. This differs from previous develop-
ments in the treatment of the interfacial shearing
forces between the phases, and results in
equations which do not exhibit the anomalous
characteristics (e.g. of hydraulic diameter) ob-
tained in previous developments. The equations
are also more successful than previous “lumped
flow” theories in predicting pressure gradient
when one or both phases flow viscously.

A function, Z, of the interfacial shear stresses
has been defined. The assumption that this
function has a constant value over all the
conditions examined by Lockhart and Martinelli
gives good agreement between predicted gradi-
ents and experiment. The reduction of the
equation for limiting values of Z to give equa-
tions corresponding to the annular flow and
homogeneous flow theories has been demon-
strated.

Simplified equations for use in engineering
design have been recommended.
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APPENDIX
Annular Flow and Zero Slip Equations
For annular flow

pL = 7D, (56)
hence substituting in equation (23) gives
o= 2D = A /A (57
From equation (15), as pg = 0
S = AG APTP‘ (58)
Combining equations (18) and (58) gives
Skr=1; (59)
hence from equation (29)
Z = . (60)

Substitution of equations (9), (57) and (60) in
equation (45), where n = 0, gives

_ Ag
¢ = (1 +A—L>

For the zero slip condition (K = 1) if it is
assumed that there is also no local slip, then,

(61)
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using the reasoning forming the basis of the
variable density model of Bankoff [11], the
phase densities must also be uniformly distri-
buted radically. In that case the phase perimeter
is proportional to the phase cross-sectional area.
From equations (23) and (24) therefore, « and §
will both be unity. As rough tubes are being
considered f; and f; will be identical. Hence
from equation (28)

Z= (ﬂ)o's, (62)
Pg
and from equation (32)
A, 1M, (ps 0'5_11_3‘ pe\*
A—G—EM“G<E>' Tz x (E) '
(63)

For rough tubes it is readily shown that

_ 05
1—x (&) 6
X \PL

Substituting equation (64) in (63).
A, X

A, Z

X = J(AP,/APg) =

(65)

Combining equation (45) and (65), where o = 1
and n = 0, gives

¢} =1+ C/X + 1/X?, (66)

where
C=7+ ! 67
=Z+5 (67)

Combining equations (62), (64), (66) and (67)
gives

1 P’
¢ = (T—:x—){(l' -x)+ xP—G} ;o (68)
also as
AP, = AP /(1 — x)?, (69)
it follows that
TP (1~ x) + x 2 (70)

AP, Pa
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Résumé—On expose des équations utilisant les groupes de corrélation de Lockhart-Martinelli pour

exprimer le gradient de pression di au frottement pendant I’écoulement dans des tuyaux de mélanges

gaz-liquide ou vapeur-liquide. Le développement théorique differe des méthodes antérieures en ce que

I’on tient compte.des forces de cisaillement aux interfaces entre les phases; quelques-unes des anomalies

qui se produisent dans des modéles antérieurs d’“‘écoulement global™ sont évitées. On obtient un bon

accord avec les courbes empiriques de Lockhart—Martinelli. On donne également des équations simplifiées
destinées a €tre employées dans la technique.

Zusammenfassung—Fs wurden Gleichungen entwickelt in der Art der Lockhart-Martinelli-Beziehungen,
welche die Ausdriicke fiir den Reibungsdruckgradienten der Stromung von Gas-Fliissigkeits- oder
Dampf-Fliissigkeitsgemischen in Rohren korrelieren. Die theoretische Behandlung unterscheidet sich
von fritheren Entwicklungen in der Methode, nach der die Reibungskrifte in der Grenzschicht zwischen
den Phasen beriicksichtigt wurden; einige der Anomalien der friiheren Modelle der “Klumpenstréomung”
verschwinden hier. Gute Ubereinstimmung ergibt sich mit den empirischen Kurven von Lockhart-
Martinelli. Vereinfachte Gleichungen fiir ingenieurmissige Anwendungen sind ebenfalls angegeben.

Annoraua—Ha ocHOBe KOppedALMOHHWX rpynn Jlokxapra-MapTHHe/UIH npenIoMxenn
YPaBHEHMA NAA TPAJMEHTA NABJICHMA U TPEHMA IPH TeUeHUM Ta30MMIKOCTHHX M napo-
*KUAKOCTHBIX cMecell B TpyGax. TeopeTudecKuit TOAXOJ OTJIHMYEH OT NPeRBIAYMIEr0 METOnaA,
Gasupyollerocs Ha AONMYIIEHHH O CYLUIeCTBOBAHMM CABMIOBHIX HANPAKEHMH HA NMOBEPXHOCTH
pasnena ¢as. VCKIOYeHb HEKOTOpHIE aHOMAJNM, BCTPEYAOIHMECH B NMPERBIAYIIMX MONETAX
«MACCHBHOrO MOTOKa». IlONydeHO Xopoliee cCOriacoBaHye C OMIUPUYECKHMM KPUBLIMH
Jlokxapra-MaprrrHennn. [JalOTCA Takke YIpPOINEHHHMe YPBBHeBHUA [JIA NPHMEHEHHA B
TEeXHUYECHUX pacueTax.



