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Abstract-Equations arc developed in terms of the Lockhart-Martinelli correlating groups for the friction 
pressure gradient during the flow of gas-liquid or vapour-liquid mixtures in pipes. The theoretical 
development differs from previous treatments in the method of allowing for the interfacial shear force 
between the phases; some of the anomalies occurring in previous “lumped flow” models are avoided. 
Good agreement with Lockhart-Martinelli empirical curves ate obtained. Simplified equations for use in 

engineering design are also given. 

NOMENCLATURE 

cross-sectional area of pipe ; 
cross-sectional area of pipe occupied 
by gas or vapour; 
area of interface between phases per 
unit length of pipe ; 
cross-sectional area of pipe occupied 
by liquid ; 
coefficient in friction coefficient equa- 
tion for gas or vapour ; 
coefficient in friction coefficient equa- 
tion for liquid ; 
inside diameter of pipe ; 
hydraulic diameter of gas flow; 
hydraulic diameter of liquid flow ; 
friction factor for gas phase during 
two-phase flow; 
friction factor when gas flows alone ; 
friction factor for gas phase in Lock- 
hart-Martinelli theory ; 
friction factor at interface between 
phases ; 
friction factor for liquid phase during 
two-phase flow ; 
friction factor when liquid flows 
alone ; 

friction factor for liquid phase in 
Lockhart-Martinelli theory ; 
ratio of gas to liquid velocity ; 
mass flowrate of gas ; 
mass flowrate of liquid ; 
exponent of Reynolds number in 
Blasius equation : gas phase ; 
exponent of Reynolds number in 
Blasius equation; liquid phase ; 
friction pressure gradient if gas flows 
alone ; 
friction pressure gradient if liquid 
flows alone ; 
friction pressure gradient if both 
phases had density of liquid ; 
friction pressure gradient during two- 
phase flow; 
a change in perimeter of a phase at 
pipe wall ; 
perimeter of gas phase at pipe wall ; 
perimeter of liquid phase at pipe wall ; 
force between phases per unit length 
of pipe; 
a “shear force ratio” defined by 
equation (18) ; 
velocity of gas during two-phase flow ; 
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UL. velocity of liquid during two-phase be concerned in the design of plant with the 
flow ; whole range of flow patterns, will normally use 

X, Lockhart-Martinelli parameter, more generalized procedures for estimating 
(&I&)+ ; pressure gradients which are not tied to specific 

X, ratio of the gas mass flowrate to the flow patterns. One such procedure is that 
total mass flowrate ; developed by Lockhart and Martinelli [3] 

2, dimensionless group defined by equa- some 18 years ago; over a wide range of con- 
tion (29). ditions this procedure has been shown [4] to 

give better agreement with experiment than more 
Greek symbols recent procedures. 

ratio of hydraulic diameter of liquid In this report the basis of the Lockhart- 
during two-phase flow to that during Martinelli correlation is re-examined. 
single-phase flow ; 
as defined by Lockhart and Martinelli : 2. PREMOUS THEORY 

the square of the ratio of the diameter The basis of Lockhart and Martinelli’s de- 
of a pipe of cross-section AL to the velopment [3] is the assumption that for each 
liquid phase hydraulic diameter, equa- phase 
tion (3); 
ratio of hydraulic diameter of gas 
during two-phase flow to that during and 
single-phase flow ; 
as defined by Lockhart and Martinelli : 

AP, = %~~~;PLPL (1) 

APTP = 2 Ai& PGIDG, (2) 

the square of the ratio of the diameter where the phase hydraulic diameters DL and DG, 
of a pipe of cross-section .& to the the phase velocities UL and U& and the friction 
gas phase hydraulic diameter, equa- factors f: and fz are defined as follows: 
tion (4) ; 
angle shown in Fig. 2 ; 
absolute viscosity of gas ; 
absolute viscosity of liquid ; 
density of gas ; 
density of liquid ; 
shear stress of gas on wall ; 
shear stress between phases; 
shear stress of liquid on wall ; 
Lockhart-Martinelli parameter 

(A.PTP/APGP; 

Lockhart-Martinelli parameter 

(AP TPIAPLP. 

1. INTRODUCTION 

AL = a’ (3) 

(4) 

ML 
UL = 

() 

, (5) 

a' :Di pL 

MG 
UG = 

B' ;Di PC' 

() 

(6) 

IN RECENT years much of the work on under- 
standing two-phase (gas-liquid or vapour- 
liquid) flow has been directed towards the and 
examination of particular flow patterns, and 
considerable progress has been made [l, 21 in 
this direction. However, the engineer, who may 

(7) 

f: = cG&$$ (8) 
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As 

A = A‘. + A,, (9) 

from equation (3), (4) and (9) 

a’D~+fi’D~=D2. (10) 

The analysis eventually resulted in equations 
relating 

DL DC - - 
DG’ D ’ ” 

and /I 

with 

4 &, L3 

where 

&IA and &I-% 

(pLC +!$ J( > L 

and 

&= 9. J( > G 

(11) 

(12) 

The analysis also resulted in the postulation 
that both sets of parameters are functions of X 
where 

x= A!& J( 3 (13) 

Graphical plots of a wide range of data con- 
firmed this postulation and resulted in empirical 
curves for use in design. 

The analysis was unsuccessful in that no 
equations suitable for predicting pressure gradi- 
ents were obtained (empirical curves were 
developed). Also the values of a’ obtained were 
all less than unity, whereas geometric con- 
siderations would suggest that a’ should be 
greater than unity; this follows from equation 
(3) since spread over the wall decreases the 
hydraulic diameter relative to a circular cross- 
section. 

Turner and Wallis [S] have more recently 
used essentially the same set of basic equations 
(l-8) in a treatment which leads to theoretical 
equations. However, as Wallis writes: “there is 

unfortunately no rationale for the excellent 
agreement between (the) equation (relating 4L 
and AJA) and Martinelli’s empirical results”. 

3. PROPOSED THEORY 

Irrespective of the flow pattern, the following 
equations can be written for the force balances 
on each phase : 

and 

ALAP,, - z,p, + S =0 (14) 

A, AP TP-TGpG-s=o, (15) 

where the shear force S per unit length of pipe 
at the interface between the phases acts on the 
liquid in the direction of motion. 

Following normal single-phase procedures 
the shear forces at the pipe wall will be assumed 
to be 

and 

f I. 2 
‘SL = -UL PL 2 

(16) 

s G 2 
ZG = -uGp,. 

2 (17) 

For convenience define a “shear force ratio” 

s,= s 
AC&P’ 

(18) 

Combining equations (14), (16) and (18) gives 

MTP 
c > 

1 + SR$ = fLfyL (19) 
L 2 

and equations (15), (17) and (18) 

AP,(l - S,) = Jyy PG. (20) 
G 

In Fig. 1 the assumed phase distribution is 
indicated and, in Fig. 2, the distribution if the 
interface between the phases lies along radial 
lines, the phase cross-sectional areas remaining 
the same. Let Ap be the change in perimeter of 
each phase due to this change in distribution, 
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Substituting equations (23) and (24) in equa- 
tions (19) and (20) respectively gives 

and 

2fGuipG 
AP,,(l - s,) = BD . (27) 

FIG. 1. A representative phase distribution. 
Thus in the proposed theoretical development 

equations (26) and (27) replace the Lockhart- 
Martinelli equations (1) and (2). 

Combining equations (26) and (27) gives 

Interface 

FIG. 2. Phase distribution: each phase occupying a sector 
of cross-section. 

then from geometric considerations 

PG - AP 480 4 
A,=m=jj> (21) 

and 

PL+AP 4 --_=- 
A, D' 

Now define a and fi such that 

& = 4 - 
A, aD' 

and 

PG 4 -- 
A, - fiD' 

Combining equations (9), (21-24), 

(22) 

(23) 

(24) 

(25) 

where 

z = (1 +yp)@5. (29) 

The phase continuity equations are 

ML = ULALPL 

MG = U~GPG, 

and from equations (28, (30) and (31) 

If the phases flow alone, the pressure drops 
per unit length are given by 

APL = 
LfWi 

DAZp, 

and 

APC = 
2-f bMi 
DA2p,’ 

Combining equations (13,32-34) gives 

(33) 

(34) 

and from equations (9,26,30, 34) 

Ml-P 1 f~ (1 + &/AL)~ _ 
APL = if;. 1 + SRAG/AL' 

(36) 
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Combining this equation with equation (29), 

4. THE FRICTION FACTORS 

The single-phase friction factors fL and fc 
can be expressed 

f;.= CL & II, ( > L 
(38) 

and 

It is assumed that the individual phase 
friction factors during two-phase flow can be 
expressed 

fL = CL & ( ) n. 
L 

and 

w 

(41) 

The inclusion of a and /I in these equations is 
on the assumption that the characteristic length 
in Reynolds number is proportional to the 
hydraulic diameter of the phases. 

Hence from equation(38-41) 

and from equations (38) and (40) 

(43) 

Values of the exponents M and n are given in 
Table 1. The four flow mechanisms in this 
table are as defined by Lockhart and Martinelli 

PI : 
1. Flow of both the liquid and the gas may be turbulent 
(turbulent-turbulent flow). 
2 Flow of the liquid may be viscous and flow of gas may 
be turbulent (viscous-turbulent flow). 
3. Flow of the liquid may be turbulent and flow of the 
gas viscous (turbulent-viscous flow). 
4. Flow of both the liquid and the gas may be. viscous 
(viscous-viscous flow). 

It is important to note that equations (42) 
and (43) are obtained on the assumption that 
for each phase the single and two-phase flows 
have the same mechanisms [e.g. the Reynolds 
number in equations (38) and (40) must in both 
cases be either turbulent or viscous]. 

Substituting equations (9) and (42) in (35) gives 

w 
and substituting equations (11) and (43) in (37) 

g:.=-& (1 +$r-“(++ l). (45) 

If 2 is known equations (9, 25,44,45) can be 
solved for given values of X and AJA to give 
give 4L Previous work by the writer [6, 71 on 
flow through orifices has indicajed that for those 
conditions 2 tends to approach a constant 
value independent of the individual phase flow- 
rates. 

Table 1. Values ofm and n 

Flow mechanism 
turbulent- viscous 
turbulent turbulent 

turbulent- 
viscous 

viscous 
viscous 

Surface 
n 

smooth 
0.2 

rough 
0 

smooth 
10 

smooth smooth 
0.2 1.0 

m 
Liquid Reynolds number 
Gas Reynolds number 

0.2 0 0.2 10 10 
>2ooo >2ooo <lOOO >2ooo <loo0 
>2ooo >2ooo >2ooo <2ooo <loo0 
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5. COMPARISON WITH EXPEmEm 

Table 2 compares values of & predicted 
using equations (25) (44) and (45) and Z = 14 
with Lockhart and Martinelli’s empirical values. 
This value of Z was found by trial and error, to 
give the most satisfactory agreement with the 
empirical values. In evaluating & the values of 
A/A, recommended by Lockhart and Martinelli 
[3] were used; these are shown in Table 2. 

Where both phases flow turbulently the pre- 
dicted values of C#J~ are within - 13 per cent, 

for a viscous liquid and turbulent gas within 
- 14 per cent, + 21 per cent; and for both phases 
flowing viscously -21 per cent, + 16 per cent. 
There are no data for the case of a turbulent 
liquid and a viscous gas. 

Figures 3-5 show the comparison of pre- 
dicted values of & with experimental values for 
the turbulent-turbulent, viscous-turbulent and 
viscous-viscous regimes; these figures corres- 

Table 2.Values of & predicted by proposed theory compared 
with Lockhart-Martinelli values 

X 0.1 1.0 10 100 

AlA, 20 4.35 1.88 I.11 

Turbulent-turbulent flow 

Lockhart-Martinelli 18.5 4.20 1 .I5 1.11 

Proposed m = n = 0 
theory 1 m = n = 0.2 

18.0 4.02 1.62 1.07 
17.0 3.84 1.53 1.04 

Viscous-turbulent flow 

Lockhart-Martinelli 15.2 3.48 1.59 I.11 
’ Proposed theory (m = 0.2) 18.4 3.63 1.31 I.01 

Turbulent-viscous flow 

Lockhart-Martinelli 14.5 3.48 1.66 1.11 

Proposed theory (n = 0.2) 16.2 3.50 1.36 0.952 

Viscous-viscous flow 
Lockhart-Martinelli 12.4 2.61 1.50 1.11 

Proposed theory 13.2 3.02 1.19 0.88 

pond to the figures in Lockhart and Martinelli’s 
original paper (note that C#J~ = & X). The curves 
of AL/A obtained by Lockhart and Martinelli 

Parameter, X 

FIG. 3. Relation between AJA, & and parameter X for turbulent-turbulent flow. 
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are also shown in Figs. 3-5, the same curve 
being found to hold for all regimes. 

6. ANNULAR ‘kLOW PATI’ERN AND 
ZERO SLIP CONDITION 

The basis of the above development is the 
assumption of a value for 2. Two limiting 
conditions enable 2 to be estimated as shown 
in the Appendix. The first of these is the case of 
annular flow which results in the equation 

&= I+$ 
( > 

(46) 

for the case of turbulent-turbulent flow in rough 
tubes (n = 0). This form of equation has, of 
course, been examined elsewhere [S-11]. 

The zero slip condition, if examined assuming 
no local slip as in the Bankoff model [12], 
results in the “homogeneous” equation 

MT, -= 
AP, 

(47) 

I~OOr- 

VP <I 
s .- 
E 0.10 - 

P 
s 
3 

O.Ol- 100 

or 0.5 

4L = & (48) 

again for the case of turbulent-turbulent flow in 
rough tubes (n = 0). Table 3 compares values of 
C#I~ obtained using equations (45), (46) and (58) 
with the Lockhart-Martinelli values. Equations 
(46) and (48) tend to predict values greater than 
Lockhart and Martinelli, but the annular 
assumption is not unsatisfactory the maximum 
difference from Lockhart and Martinelli being 
+8 per cent; however these equations do not 
satisfactorily predict values for regimes other 
than the turbulent-turbulent. 

Table 3. Values of C#I~ by various theories for rough pipes 

X 0.1 1.0 10 loo 

Lockhart-Martinell 18.5 4.2 1.75 1.11 
Proposed theory 18.0 4.02 1.62 1.07 
Annular theory 20.0 4.35 1.88 1.11 
Homogeneous theory 19.3 540 1.93 1.10 

Parameter, X 

FIG. 4. Relation between AL/A, qSG and parameter X for viscous-turbulent flow. 

SIJ 
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Parameter, X 

FIG. 5. Relation between AL/A, (PG and parameter X for viscous-viscous flow. 

It is worthwhile examining at this point to 
which extent the agreement obtained using 
equation (45) is due to the value of AL/A 
selected. !n relation to this, consider the data 
given in [9]. With X < 2, AL/A is a function of 
liquid mass velocity (i.e. the slip ratio K is a 
function of ML [13]) hence for a particular X 
there are a series of values of AL/A. Figure 6 
compares theory with experiment. In evaluating 
the predicted curves in this figure, X is kept 
constant and A/A, varied; it can be seen that 
the proposed theory more closely follows the 
experimental trends than the annular theory. 

7. VALUES OF a AND /I 

Values of CY and ,$ estimated from equations 
(25) and (44) are given in Table 4. The values of 
c1 are generally below unity which is consistent 
with the known tendency for the heavier liquid 
phase to approach the wall ; the trend of a as 

6 

J- 

2- 
- Proposed theory 
a-* Annular theory 

- - - Experiment 

I I I 
0 0.1 0.2 

Liquid fraction, $- 

3 

FIG. 6. Variation of 4G with AL/A for 
x = 1. 
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Table 4. Values of a and /I 

0.1 1.0 10 100 
X a B a B a B a B 

Turbulent-turbulent (m = n = 0) 0.067 3.67 0.274 4.79 0.719 1.79 0.963 1.53 
(m = n = 0.2) 0.071 3.23 0.288 3.82 0.754 1.58 0.998 1.02 

Viscous-turbulent 0.057 7.82 0.278 4.48 0.730 1.72 0,995 1.05 
Turbulent-viscous 0.077 2.69 0.355 2.46 0,954 1.11 1.172 044 
Viscous-viscous 0,080 2.56 0.33 1 2.53 0.846 1.26 1,138 0.48 

defined by equation (23) will differ from that of 
IX’ defined by equation (5). The present theoretical 
approach overcomes the anomalous trends in 
the hydraulic diameter of the liquid phase noted 
by Lockhart and Martinelli and by Turner and 
Wallis. 

The values of j? are normally above unity and 
it is of interest that the maximum divergences in 
predicted & occurs where /I becomes less than 
unity. This corresponds to the condition where 
there is a small vapour cross-section distributed, 
for example, as in Fig. 1, and results in the 
predicted two-phase pressure drop being less 
than that for liquid flow alone (the shearing 
force of the liquid on the wall is greater than in 
the absence of the gas phase, but the liquid 
perimeter with the wall has decreased); this is 
not necessarily physically impossible but is not 
confirmed by the limited data available in this 
region. 

8. THE SHEAR FORCE FUNCTION 2 

Considering now in more detail the function 
2 defined by equation (29). the interfacial shear 
force is related to the interfacial shear stress in 
the equation 

s = ri Ai. (49) 

Assume that the interfacial shear stress can be 
expressed 

Substituting equation(50) in (49) 

s+ 1 -; 2PcAi. 
( > 

(51) 

Substituting equations (20) (24) and (51) in (18) 
gives 

SR --_=-- 
1 - SR 

(52) 

Rearranging 

1 
SR = & A,4 1 . (53) 

-- 
j-; /IDAi [l - (l/K)12 + ’ 

Substituting equation (53) in (29) 

In examining the dimensions of the above 
expression it should be remembered that Ai is 
the interfacial surface area per unit length of 
pipe. 

The form of equation (54) gives some ex- 
planation for the relative success of treating 2 
as a constant (it is for example independent of 
the pressure gradient and to the first order on 
the phase mass velocities) but more detailed 
examination of this aspect is required. 

9. RECOMMENDED EQUATIONS 

FOR DESIGN 

Equations (44) and (45) are unnecessarily 
complicated as far as the engineer is concerned. 

(50) For engineering calculations the writer recom- 
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mends [9] the following equations for predicting 
friction pressure drop during two-phase flow in 
pipes 

4; = 1 + c/x + l/x2, (55) 

where C as the following values: 

turbulent-turbulent flow, C = 20; 

viscous-turbulent flow, C = 12 ; 

turbulent-viscous flow, C = 10; 

viscous-viscous flow, c = 5. 

A theoretical basis for equation (55) for 
turbulent-turbulent flow in rough pipes is given 
in the Appendix. 

Values predicted using these values of C and 
equation (55) are compared with Lockhart and 
Martinelli’s values in Table 5. The values of C 
are restricted to mixtures with gas-liquid density 
ratios corresponding to air-water mixtures at 

Table 5. 4,_ from equation (55) and Lockhart-Martinelli 

4L 

X 0.1 1.0 10 loo 

Turbulent-turbulent flow 
Lockhart-Martinelli 18.5 4.2 1.75 1.11 
Equation (55) (c = 20) 17.3 4.7 1.73 1.10 

Viscous-turbulent flow 
Lockhart-Martinelli 15.2 3.48 1.59 1.11 
Equation (55) (c = 12) 14.9 3.75 1.49 1.06 

Turbulent-viscous flow 
Lockhart-Martinelli 14.5 3.48 166 1.11 
Equation (55) (c = 10) 14.1 3.47 1.42 1.05 

Viscous-viscous flow 
Lockhart -Martinelli 12.4 2.61 15.0 1.11 
Equation (55) (c = 5) 12.3 2.65 12.3 1.03 

atmospheric pressure. For turbulent-turbulent 
conditions the writer has discussed elsewhere 
[ 14, 151 methods of extrapolating these equa- 
tions for other density ratios. For the other flow 
mechanisms further work is required before 
recommendations can be made on the influence 
of the density ratio. 

10. CONCLUSIONS 

A theoretical basis for the Lockhart-Martinelli 

correlating procedure for two-phase flow is 
developed. This differs from previous develop- 
ments in the treatment of the interfacial shearing 
forces between the phases, and results in 
equations which do not exhibit the anomalous 
characteristics (e.g. of hydraulic diameter) ob- 
tained in previous developments. The equations 
are also more successful than previous “lumped 
flow” theories in predicting pressure gradient 
when one or both phases flow viscously. 

A function, 2, of the interfacial shear stresses 
has been defined. The assumption that this 
function has a constant value over all the 
conditions examined by Lockhart and Martinelli 
gives good agreement between predicted gradi- 
ents and experiment. The reduction of the 
equation for limiting values of Z to give equa- 
tions corresponding to the annular flow and 
homogeneous flow theories has been demon- 
strated. 

Simplified equations for use in engineering 
design have been recommended. 
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AC 

1 1 - x /?c “’ .=--- 
0 z x PL 

(63) 
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For rough tubes it is readily shown that 

APPENDIX 

Annular Flow and Zero Slip Equations 

For annular flow 

PL = RD, (56) 

hence substituting in equation (23) gives 

m=f&=AJA. 

From equation (15) as pG = 0 

S = AG AP,,. 

X = J(APJAP,) = !$ ; 
0 

0.5 

. 64 

Substituting equation (64) in (63) 

AL X - = -, 
AC z (65) 

Combining equation (45) and (65), where a = 1 
and n = 0, gives 

(57) 4; = 1 + c/x + l/X2, (66) 

where 

(58) 

Combining equations (18) and (58) gives 

s, = 1; (59) 
hence from equation (29) 

z = 00. (W 
Substitution of equations (9), (57) and (60) in 
equation (45), where n = 0, gives 

f#lL= l+$. 
( > L 

(61) APO = APJ(1 - x)~, (69) 

it follows that 
Ml., 
- = (1 - x) + xp:. 
AP, 

(70) 
For the zero slip condition (K = 1) if it is 

assumed that there is also no local slin, then. 

and from equation (32) 

c=z+$. 
Combining equations (62), (64), (66) and (67) 
gives 

1 

4L = (1 - x) I 
(l.- x) + xk o’5; 

PC I 

(68) 

also as 



1778 D. CHISHOLM 

R&m&On expose des equations utilisant les groupes de correlation de Lockhart-Martinelli pour 
exprimer le gradient de pression dO au frottement pendant l’&coulement dam des tuyaux de melanges 
gaz-liquide ou vapeur-liquide. Le dtveloppement theorique differe des methodes anttrieures en ce que 
I’on tient compte.des forces de cisaillement aux interfaces entre les phases; quelques-unes des anomalies 
qui se produisent dans des modbles anterieurs d”%coulement global” sont evitees. On obtient un bon 
accord avec les courbes empiriques de Lockhart-Martinelli. On donne Cgalement des equations simplifites 

destintes a &tre employees dans la technique. 

Zusammenfassung-Es wurden Gleichungen entwickelt in der Art der Lockhart-Martinelli-Beziehungen, 
welche die Ausdrticke fur den Reibungsdruckgradienten der Stromung von Gas-Fltissigkeits- oder 
Dampf-Fliissigkeitsgemischen in Rohren korrelieren. Die theoretische Behandlung unterscheidet sich 
von friiheren Entwicklungen in der Methode, nach der die Reibungskrlfte in der Grenzschicht zwischen 
den Phasen berticksichtigt wurden; einige der Anomalien der friiheren Modelle der “Klumpenstriimung” 
verschwinden hier. Cute Ubereinstimmung ergibt sich mit den empirischen Kurven von Lockhart- 

Martinelli. Vereinfachte Gleichungen fiir ingenieurmlssige Anwendungen sind ebenfalls angegeben. 

AanorrnRna-Ha OCHOBe Koppenuueonubrx rpynn flOKXapTa-MapTmiennM npe,!(noHteirbr 
J’paBHeH~fl AJIl3 VpaAPieHTa AaBJIeHEiH kl TpeHkIR IIpH TeYeHllH I’WlOHGlJ(KOCTHbIX II IElpO- 

EWIAKOCTHMX CMeCelt B Tpy6ax. TeOpeTIiYeCKMfi IIOflXOJJ OTJIIlqeH OT l-IpeJ&I~j’~erO MeTOAa, 

6aaapyromerocn Ha ~OIIyUJeHMI4 0 CJ’llleCTBOBaHHH CaBHPOBbIX HaIIJIHHceHEi# Ha IIOBepXHOCTM 

paanena @aa. McKnmeKbt HeKoTopbre arioManau, ncTpeqaromuecfi n npenblnymux monennx 
HMaCCHBHOrO IIOTOKa). nOJIJ’YeH0 XOpOIUee COl-JIaCOBaHIle C i3MIIMpWleCKHMI.i KpMBbIMH 

,rIOKXapTa-MapTTHenn~. AaloTCR TBKH(t? J’IIpO~eHHhle J’pBBHebHH AJIK IIpMMeHeHHFI B 

TexKmecKAx pacueTax. 


